Искусственные мышцы. Реабилитации парализованной ноги помогут искусственные мышцы

Современные роботы могут многое. Но при этом им далеко до человеческой легкости и грациозности движений. И вина тому - несовершенные искусственные мышцы. Ученые многих стран стараются решить эту проблему. Статья будет посвящена краткому обзору их удивительных изобретений.

Полимерные мышцы от сингапурских ученых

Шаг к более недавно сделали изобретатели из Национального Сегодня андроиды-тяжеловесы двигаются за счет работы гидравлических систем. Существенный минус последних - небольшая скорость. Искусственные же мышцы для роботов, представленные сингапурскими учеными, позволяют киборгам не только поднимать предметы, которые в 80 раз тяжелее их собственного веса, но и делать это так же быстро, как и человек.

Инновационная разработка, растягивающаяся в длину в пять раз, помогает "обойти" роботам даже муравьев, которые, как известно, могут переносить предметы в 20 раз тяжелее веса их собственного тельца. Полимерные мышцы обладают следующими достоинствами:

  • гибкостью;
  • поражающей прочностью;
  • эластичностью;
  • способностью менять свою форму за несколько секунд;
  • возможностью преобразовывать кинетическую энергию в электрическую.

Однако на этом ученые не собираются останавливаться - в их планах создать искусственную мускулатуру, которая бы позволила роботу поднимать груз, в 500 раз тяжелее его самого!

Открытие из Гарварда - мышцы из электродов и эластомера

Изобретатели, которые трудятся в Школе прикладных и инженерных наук Гарвардского университета, представили качественно новые искусственные мышцы для так называемых "мягких" роботов. По словам ученых, их детище, состоящее из мягкого эластомера и электродов, в чьем составе углеродные нанотрубки, по своим качествам не уступает человеческой мускулатуре!

Все существующие на сегодня роботы, как уже говорилось, имеют в своей основе приводы, чей механизм - это гидравлика или пневматика. Такие системы работают за счет сжатого воздуха или реакции химических веществ. Это не позволяет сконструировать робота, такого же мягкого и быстрого, как человек. Гарвардские ученые устранили этот недостаток, создав качественно новый концепт искусственных мышц для роботов.

Новая "мускулатура" киборгов - многослойная структура, в которой электроды из нанотрубок, созданные в лаборатории Кларка, управляют верхними и нижними слоями гибких эластомеров, являющихся детищем ученых уже из Калифорнийского университета. Такие мышцы идеальны как для "мягких" андроидов, так и для лапароскопических инструментов в хирургии.

На этом замечательном изобретении гарвардские ученые не остановились. Одна из последних их разработок - это биоробот-скат. Его составляющие - клетки сердечных мышц крыс, золото и силикон.

Изобретение группы Баухмана: еще один вид искусственных мышц на основе углеродных нанотрубок

Еще в 1999 г. в австралийском городке Кирхберге на 13-й встрече Международной зимней школы по электронным свойствам инновационных материалов выступил с докладом ученый Рей Баухман, работающий в компании Allied Signal и возглавляющий международную исследовательскую группу. Его сообщение было на тему изготовления искусственных мышц.

Разработчики под началом Рэя Баухмана смогли представить в виде листов нанобумаги. Трубочки в этом изобретении были всячески переплетены и перепутаны между собой. Сама нанобумага своим видом напоминала обычную - ее возможно было держать в руках, разрезать на полосы и кусочки.

Эксперимент группы с виду был очень прост - ученые прикрепили кусочки нанобумаги к разным сторонам клейкой ленты и опустили эту конструкцию в соляной электропроводный раствор. После того как была включена слабовольтная батарея, обе нанополоски удлинились, особенно та, что была связана с отрицательным полюсом электробатареи; затем бумага изогнулась. Модель искусственной мышцы функционировала.

Сам Баухман считает, что его изобретение после качественной модернизации существенно преобразит роботехнику, ведь такие углеродные мышцы при сгибании/разгибании создают электрический потенциал - производят энергию. К тому же такая мускулатура раза в три сильнее человеческой, может функционировать при крайне высоких и низких температурах, используя для своей работы невысокую силу тока и напряжения. Вполне возможно ее применение и для протезирования человеческих мышц.

Техасский университет: искусственные мышцы из рыболовной лески и швейных ниток

Одной из самых поразительных является работа ученой группы из Техасского университета, который расположен в Далласе. Ей удалось получить модель искусственной мускулатуры, по своей силе и мощности напоминающей реактивный двигатель - 7,1 л.с./кг! Такие мышцы в сотни раз сильнее и продуктивнее человеческих. Но самое удивительное здесь то, что их сконструировали из примитивных материалов - высокопрочной лески из полимера и швейной нитки.

Питание такой мышцы - это перепад температур. Обеспечивает его швейная нить, покрытая тонким слоем металла. Однако в будущем мышцы роботов могут подпитываться от перепадов температур окружающей их среды. Это свойство, кстати, вполне можно применять для адаптирующейся к погоде одежды и других подобных устройств.

Если скручивать полимер в одну сторону, то он будет резко сжиматься при нагревании и быстро растягиваться при охлаждении, а если в другую - то в корне наоборот. Такая нехитрая конструкция может, например, вращать габаритный ротор со скоростью 10 тыс. оборотов/мин. Плюс таких искусственных мышц из лески в том, что они способны сокращаться до 50 % от своей исходной длины (человеческие только на 20 %). Кроме этого, их отличает удивительная выносливость - эта мускулатура не "устает" даже после миллионного повторения действия!

От Техаса до Амура

Открытие ученых из Далласа вдохновило немало ученых со всего мира. Успешно повторить их опыт, однако, удалось только одному роботехнику - Александру Николаевичу Семочкину, главе лаборатории информационных технологий при БГПУ.

Вначале изобретатель терпеливо ждал новых статей в Science о массовом внедрении в жизнь изобретения американских коллег. Так как этого не происходило, амурский ученый решил со своими единомышленниками повторить замечательный опыт и сотворить своими руками искусственные мышцы из медной проволоки и рыболовной лески. Но, увы, копия оказалась нежизнеспособной.

Искусственные мышцы из нейлоновой лески

С обычной рыболовной леской из полимерного материала можно сделать занимательный опыт. Если вытянуть леску в длину и, зажав один конец, долго закручивать другой вокруг своей оси, то на леске образуются плотные кольца и она приобретает вид спиральной пружины. При нагревании эта пружина сокращается, а при охлаждении – удлиняется. Сборная команда новосибирских школьников исследовала свойства такой «искусственной мышцы» на Международном турнире юных физиков IYPT-2015. Интересно, что для количественного описания сокращения таких мышц можно использовать теорему Калугаряну – Уайта – Фуллера, ранее нашедшую применение в молекулярной биологии при описании сверхспирализованных ДНК

Искусственные мышечные волокна, способные многократно сокращаться под действием внешнего стимула и совершать механическую работу, в недалеком будущем могут найти применение в разнообразных приложениях, от экзоскелетов и промышленных роботов до микрофлюидных технологий. Разработки и исследования искусственных мышц ведутся по разным направлениям – металлы с памятью формы, электроактивные полимеры, жгуты из углеродных нанотрубок. Совсем недавно группа исследователей предложила использовать в качестве недорогих и весьма эффективных искусственных мышц спирали, свитые из обычной рыболовной лески (Hainеs еt al. , 2014). Такая искусственная мышца заметно сокращается при нагревании и вновь удлиняется при охлаждении. Изготовить спиральную мышцу из нейлоновой лески и исследовать ее свойства было предложено участникам Международного турнира юных физиков IYPT-2015 в задаче «Искусственная мышца».

Мышцы требуют тренировки

В наших экспериментах мы использовали леску диаметром 0,7 мм. Чтобы свернуть ее в спираль, мы закрепили электродрель в вертикальном положении, зажали один конец лески в патроне, а к другому концу прикрепили груз весом 3 Н – при таком весе леска не порвется, а свернется в однородную спираль. В процессе закрутки груз должен подниматься вверх, не проворачиваясь вокруг вертикальной оси, для чего на него устанавливается фиксатор.

Когда продольные волокна на поверхности лески завиваются примерно на 45° по отношению к продольной оси, леска начинает скручиваться в плотную спираль. Исходный отрезок лески длиной 1 м при скручивании превращается в 17 см такой спирали. При этом нейлон претерпевает столь сильную пластическую деформацию, что после снятия вращающего усилия спираль почти не раскручивается обратно. В принципе это новое состояние волокон можно закрепить, медленно нагрев леску до температуры, близкой к температуре плавления, а затем охладив ее.

Во избежание раскручивания спирали при последующих испытаниях мы составляли искусственную мышцу из двух спиралей с правой и левой завивкой, скрепляя их параллельно. Снизу к вертикально подвешенной мышце крепился поднимаемый груз. Для сокращения мышцы на ее верх­ний конец по трубке подавалась горячая вода, которая свободно стекала по спиралям вниз. Температура мышцы измерялась закрепленным на ней термодатчиком, удлинение – ультразвуковым датчиком перемещения.

Работа, совершаемая двигателем по перемещению груза против постоянной действующей силы, равна произведению величины силы и перемещения. Например, при перемещении свободно подвешенного груза весом 10 Н вверх (т.е. в направлении, противоположном вектору силы тяжести) на 0,03 м подъемник совершает работу 10 Н × 0,03 м = 0,3 Дж.

Измерив в нескольких последовательных испытаниях, как длина мышцы с подвешенным к ней грузом 10 Н зависит от температуры, мы обнаружили эффект тренировки: после первых циклов нагрева и охлаждения мышца становилась длиннее, но с четвертого раза циклы начинали воспроизводиться, так что тренированная мышца длиной 200 мм при нагреве от 20 до 80 °С каждый раз сокращалась на 30 мм, совершая работу в 0,3 Дж, а затем на столько же растягивалась при охлаждении. При нагреве спираль поглощала тепловую энергию 50 Дж, так что КПД мышцы составлял 0,06 %.

Твист и серпантин

Объясним теперь, почему нейлоновая спираль сокращается при увеличении температуры. Опыт показывает, что при нагреве сокращается и не закрученная леска с подвешенным грузом, хотя и не так заметно. Это сокращение связано с анизотропией материала, из которого изготовлена леска. Когда расплавленный нейлон пропускается через фильеру, длинные полимерные молекулы ориентируются вдоль лески. Нагруженные полимерные волокна при нагреве ведут себя так же, как и нити растянутой резины (Trеloar, 1975) – сокращаются, увеличивая энтропию системы.

Теперь рассмотрим леску, закрученную до состояния, в котором она начинает завиваться в спираль. Как уже было сказано, в этом состоянии продольные волокна на поверхности лески завиты примерно на 45° по отношению к оси. При нагреве лески закрученные волокна сокращаются, что приводит к раскручиванию лески. Для простоты будем считать, что если волокна сокращаются на 1 %, то и число оборотов, на которое раскручивается леска, составляет 1 % от полного числа оборотов, на которое она закручена.

Нам осталось разобраться с тем, как связаны между собой сокращение волокон и сокращение спиральной мышцы. Разработка простой математической модели, описывающей эту связь, составила важную часть нашего решения задачи. В итоге для описания сокращения спирали мы применили формулу Калугаряну – Уайта – Фуллера (CWF):

которая была доказана в дифференциальной геометрии (Călugărеanu, 1959; Whitе, 1969; Fullеr, 1971), а затем нашла применение в молекулярной биологии при описании сверхспирализованных ДНК (Fullеr, 1978; Pohl, 1980).

Число зацепления Lk (англ. – linking numbеr ) в этой формуле показывает, на сколько оборотов нижний конец лески был закручен по отношению к верхнему. Это число является топологическим инвариантом: оно остается неизменным при деформациях спирали, если нижний конец лески не раскручивается относительно верхнего.

Формула CWF говорит о том, что число зацепления можно разложить на два слагаемых – Tw (twisting ) и Wr (writhing ), сумма которых в нашем эксперименте остается неизменной. Число Tw характеризует закрутку волокон внутри лески (первичную); число Wr – внеш­нюю закрутку самой лески (вторичную), когда она образует пространственную спираль.

Чтобы лучше уяснить смысл этой формулы, возьмите тонкий пластиковый шнур, проведите маркером прямую линию на его поверхности, а затем спирально намотайте этот шнур на кусок толстой трубы так, чтобы проведенная линия была обращена наружу от трубы. Допустим, что шнур обернут вокруг трубы на 5 оборотов. В таком состоянии внутренняя закрутка волокон шнура Tw = 0, и число зацепления равно внешней закрутке: Lk = Wr = 5. Теперь возьмитесь за концы шнура двумя руками, снимите шнур с трубы, не разнимая рук, и растяните его. Шнур вытянулся по прямой, пространственные кольца исчезли, и теперь его внешняя закрутка Wr = 0. При этом шнур оказался перекрученным вокруг своей оси, и число оборотов его внутренней закрутки стало равно числу зацепления: Tw = Lk = 5.

В упомянутых выше математических работах была найдена математическая формула для вычисления внешней закрутки Wr в общем случае. Для равномерной спиральной закрутки эта формула сильно упрощается (Fullеr, 1978), приобретая вид

Wr = N ∙(1 – sin α),

где N – это число витков внешней спирали, α – угол подъема винтовой линии спирали.

Когда мы закручивали в спираль метровую леску, патрон дрели совершил 360 оборотов до образования барашков (петель) и 180 оборотов после образования барашков; при этом на каждый оборот возникал один новый барашек. Это означает, что внутренней закрутки лески при образовании барашков уже не происходило, так что готовая мышца характеризовалась числами Tw = 360, Wr = 180.

Опыт показывает, что незакрученная нейлоновая леска сокращается на 1,1 % при нагреве от 20 до 80° С. Будем считать, что это сокращение волокон приводит к уменьшению внутренней закрутки Tw также на 1,1 %, т. е. на 4 оборота. Тем самым внешняя закрутка Wr увеличивается на 4 оборота, т. е. на 2,2 %. Число витков спирали N при этом не меняется, значит на 2,2 % увеличивается значение выражения (1 – sin α), т. е. уменьшается величина угла α, за счет чего спираль и становится короче. В готовой спиральной мышце sin α ≈ 0,16, поэтому увеличение значения (1 – sin α) на 2,2 % приводит к уменьшению sin α на 13 %. Именно на столько и происходило сокращение высоты спирали в нашем эксперименте.

Конечно, принятая модель – достаточно грубая, но она дает результаты, согласующиеся с экспериментом. Ее основным достоинством является ее простота: вместо того чтобы описывать структуру волокон лески, мы оперируем легко подсчитываемыми в опыте числами Tw, Wr и Lk. Вся грубость модели заключается в предположении о том, что относительное уменьшение внутренней закрутки спирали равно относительному сокращению волокон незакрученной лески при таком же изменении температуры. Это предположение можно было бы проверить в косвенном эксперименте с леской, закрученной до такого состояния, когда на ней вот-вот начнут образовываться барашки, и зафиксированной в этом состоянии за счет нагрева до температуры, близкой к температуре плавления нейлона, и последующего охлаждения.

Литература

Călugărеanu G. L’ intégral dе Gauss еt l’analysе dеs noеuds tridimеnsionnеls // Rеv. Math. Purеs Appl. 1959. V. 4. P. 5–20.

Chеrubini A., Morеtti G, Vеrtеchy R., Fontana M. Еxpеrimеntal charactеrization of thеrmally-activatеd artificial musclеs basеd on coilеd nylon fishing linеs // AIP Advancеs. 2015. V. 5. Doc. 067158.

Hainеs C. S., Lima M. D., Na Li еt al. Artificial musclеs from fishing linе and sеwing thrеad // Sciеncе. 2014. V. 343. P. 868–872.

Fullеr F. B. Thе writhing numbеr of a spacе curvе // Proc. Nat. Acad. Sci. USA. 1971. V. 68. P. 815–819.

Fullеr F. B. Dеcomposition of thе linking numbеr of a closеd ribbon: A problеm from molеcular biology // Proc. Nat. Acad. Sci. USA. 1978. V. 75. P. 3557–3561.

Pohl W. F. DNA and diffеrеntial gеomеtry // Math. Intеlligеncеr. 1980. V. 3. P. 20–27.

Trеloar L. R. G. Thе physics of rubbеr еlasticity. Oxford univеrsity prеss, 1975.

Whitе J. H. Sеlf-linking and thе Gauss intеgral in highеr dimеnsions // Am. J. Math. 1969. V. 91. P. 693–728.

Чтение статьи займет: 6 мин.

Pulchritudo mundum servabit

(с латыни – красота спасет мир )

Независимо от действующего стандарта красоты тела человека, во все времена она пользовалась спросом. У красивых телоформ больше шансов удачно выйти замуж/жениться, расти в карьере, пользоваться популярностью и даже стать народным избранником… кино и театр, опять же. Естественно, обделенный стандартной красотой народ стремится хоть на немного приблизить свое «простенькое тельце» к эталону, терзая себя диетами, физическими нагрузками, затягиваясь в корсеты и, в крайнем варианте, общаясь по скайпу строго в режиме разговора без видео, или, в случае паршивой дикции, только перепиской. Но для современной индустрии силиконовых форм нет ничего невозможного!

За полвека разработаны пять поколений имплантатов «для коррекции красоты тела». Следует отметить, что абсолютно безопасной версии среди них не существует:

  • первое поколение (1960-1970 гг.) характеризовала прочная и толстая силиконовая оболочка с гладкой поверхностью, ее контуры можно было различить через кожу, при нажатии слышался хруст, схожий со звуком от сминаемого бумажного листа. Несмотря на толщину оболочки, ее наполнитель частично «пропотевал» наружу, вызывая частичное сморщивание тканей;
  • второе поколение (1970-1980 гг.) силиконовых имплантатов имели более тонкую оболочку и гладкую поверхность. Наполнителем, как и в первом поколении, служил силиконовый гель. Хруста они не издавали, но имели более высокую степень «пропотевания» и, что много хуже, часто рвались. Часть моделей имплантатов была покрыта губчатым материалом из микропенополиуретана, снижавшего вероятность воспаления и препятствовавшего смещению имплантата;
  • в оболочках третьего и четвертого поколений (созданы около 1985 г.) были учтены недостатки предыдущих моделей – текстура на поверхности, двойные стенки и двойная камера, с силиконовым гелем во внешней и солевым раствором во внутренней. Введение солевого раствора в нужном объеме позволяло корректировать форму имплантата после размещения «на месте». Два слоя наружных стенок препятствовали «пропотеванию», сводя его к минимуму. Разрывы имплантатов этих поколений редко, но случались;
  • пятое поколение (созданы около 1995 г.). Прочные, наполняемые силиконовым гелем с высокой межмолекулярной связью (когезией), не склонным к «пропотеванию». При перемене положения тела геометрия имплантатов не меняется под действием гравитации – наполнитель сохраняет память исходной формы. Однако 100% уверенности в их безопасности нет.

Наполнители силиконовых имплантатов:

  • жидкий силикон , по консистенции схож с растительным маслом;
  • желеобразный силиконовый гель со стандартной когезией . На ощупь выявить имплантат сложно, по плотности он соответствует живой ткани. Степень «пропотевания» низка, однако форму такой наполнитель хранит довольно слабо;
  • гель с высокой когезией , по консистенции схожий с мармеладом. Обладает крайне малой степенью деформации, не «пропотевает», но имеет высокую память формы, т.е. область тела в зоне имплантата может иметь неестественный вид;
  • гель со средней степенью когезии (soft touch), похожий на холодец. Память формы средняя, оболочка не «пропотевает»;
  • физиологический раствор (0,9% раствор поваренной соли в воде). Надежность имплантатов слабая, поскольку месяцев через девять с момента размещения в теле соль кристаллизуется, т.е. обретает частично твердую форму. Образующиеся кристаллы соли способны проткнуть оболочку имплантата.

В зависимости от зоны размещения имплантатам придется чаще овальная, реже – коническая форма. Во всех описанных ниже случаях применяются имплантаты не ниже третьего поколения.

Силиконовые груди . Задолго до появления первых хирургически модифицированных транссексуалов женщины отчаянно хотели улучшить форму своего бюста. В отсутствии иных вариантов, в ход шли различные ухищрения вроде набивного лифа и объемных кружев. Но они работали лишь до момента обнажения груди, а после… после конфуз был неизбежен. Попытку реконструировать молочные железы изнутри впервые предпринял чешский хирург Винсент Черни в 1895 году, используя жировую ткань пациентки.

Развитие киноиндустрии в начале XX века дало новый импульс в грудной имплантации. Хирурги искали оптимальный материал для увеличения женского бюста, заполняя его стеклянными шарами, жировой тканью, шерстью, свернутой в клубок полиэтиленовой лентой, пенопластом и даже, вероятно по аналогии со стеклом, шарами из слоновой кости. Среди перечисленных способов имплантации наиболее безвредной была жировая ткань самой пациентки, но новый бюст сохранял форму недолго – организм усваивал жир и груди обвисали больше, чем прежде.

Но формы кинодив не давали покоя крашеным блондинкам из США и Европы. Их логика была простой – если можно изменить цвет волос, то почему нельзя реконструировать грудь? К середине прошлого века объемы бюста увеличили порядка 50 000 женщин, в основном американок и японок (тружениц секс-индустрии из страны Восходящего Солнца). Они воспользовались новыми на тот момент материалами химической индустрии – губок из поливинила (из винила, как известно, грампластинки делали) и жидкого силикона (вводился инъекциями). Последствия были плачевны… груди настолько твердели, что приходилось спасать владелиц путем их полного удаления.

Силиконовые имплантаты в том виде, которые мы знаем сегодня, появились в 1961 году. Создала их американская корпорация Dow Corning – оболочка выполнялась из резины, наполнителем служил силиконовый гель. Спустя три года французская Arion выпускает свою версию силиконовых протезов, заполненных морской водой. В 80-х американские имплантаты сочли возможной причиной рака груди и к началу 90-х они были запрещены к массовому использованию. После шквала исков от владелиц силиконовых грудей Dow Corning выплатила более 3 миллиардов долларов компенсаций и подчистую разорилась.

Силиконовые ягодицы . Называется этот вид пластической операции глютеопластика. Цель использования имплантатов этой группы, как и в случае силиконовых грудей, связана с повышением эстетических характеристики тела – сделать плоское объемным.

По популярности среди представителей сильного и слабого полов ягодицы занимают второе место, а значит, их привлекательные параметры востребованы у потенциальных владельцев ягодичных имплантатов. Моду на оттопыренную попку среди женщин ввела Дженнифер Лопес – танцовщица, после киноактриса и певица. Пятая точка Джей Ло неизменно лидирует среди других «звездных ягодиц», чему способствует постоянная ее демонстрация.

Мне приходилось наблюдать в сети малоприятные видео с силиконовыми имплантатами в ягодицах, которые якобы можно было свободно провернуть под кожей. В действительности их правильная интеграция происходит под ягодичными мышцами, снаружи никак распознать, а уж тем более смещать имплантаты не получится.

Если груди с силиконовым наполнителем в основном пользуются популярностью у женщин, то силиконовые ягодицы одинаково привлекательны для обеих полов – ведь возрастное плоскопопие характерно и для мужчин и для женщин.

Силиконовые мышцы . Вспомним киногероев конца 80-х – брутальные, отчаянно накачанные парни класса «hasta la vista, babe», с лицом, не обезображенным мыслью. Шварценеггер, Сталлоне, Лунгрен, Скала Джонсон, Халк Хоган и многие другие – их всех прежде всего объединяли объемные, во множестве изобилующие мышцы по всему телу. Современные герои боевиков уже не те. В их черты лиц закрался интеллект, физические данные скорее на уровне medium – они стали играть свои роли, а не просто появляться в кадре грудой мышц с парой дежурных фраз на фоне антиударной белозубой улыбки.

Разумеется, мускулы киноидолов не имели естественно-природного происхождения, поскольку никакие тренировки сформировать столь выпуклые кубики и шары не позволят. Мужчины и женщины, твердо намеренные выделиться из серой массы землян впечатляющей мускулатурой, были вынуждены колоть, есть и пить химические препараты, искусственно усиливающие рост мышечных волокон и вызывающих приток крови в мускулы. Расходы на стероиды были весьма внушительны – от 25000-30000$ ежегодно. При этом объемные мышцы и реальная физическая сила не являлись синонимами – культурист способен поднять значительный вес на месте, но не способен перемещать вес, вполовину меньший поднятого, т.к. нет мышечной выносливости.

Современные актеры боевиков различного жанра приобрели удивительную способность менять объемы своего тела за считанные месяцы, что в прессе называется неким их физическим талантом и мастерством тренеров. В действительности, и с большой долей вероятности это можно утверждать, их тела тренированы не больше, чем у обычных людей, нагружающих свои мышцы лишь периодически. Заполучить рельефное тело гораздо проще при помощи силиконовых форм – имплантатов бицепса, кубиков на животе, дельтовых, икроножных мышц и пр. И при этом не случится никаких дефектов тканей и систем тела, позвоночнику не будет угрожать грыжа, а мышцам – растяжки и молочная кислота. Правда, имплантат может разорваться…

Представляю видео о двух наиболее известных в интернет-мире «имплантатных качках», считающих себя неотразимо прекрасными (я их мнения не разделяю)- британо-бразильца Родриго Алвеса и американца Джастина Джетлика:

Искусственные мышцы хороши тем, что не содержат внутренних подвижных элементов. Это еще одна, довольно радикальная, альтернатива электродвигателям и пневматике с гидравликой. Существующие сегодня образцы представляют собой либо полимеры, чувствительные к напряжению или температуре, либо сплавы с памятью формы. Для первых требуется довольно высокое напряжение, вторые же имеют ограниченный диапазон движения и к тому же весьма дороги. Для создания мягких роботов используют и сжатый воздух, но это подразумевает наличие насосов и усложняет конструкцию. Чтобы сделать искусственные мышцы, мы обратились к рецепту ученых из Колумбийского университета, которым удалось соединить в одной конструкции высокую мощность, легкость, эластичность и потрясающую простоту. Мышцы представляют собой обычный мягкий силикон, в который заранее вводятся пузырьки спирта. При нагревании нихромовой спиралью спирт внутри них начинает кипеть, и силикон сильно разбухает. Однако если поместить все это в жесткую оплетку с перпендикулярным переплетением нитей, то разбухание превратится в обычное сокращение — примерно так же работают пневматические двигатели Маккиббена.


Поскольку силикон плохо проводит тепло, важно не подавать на спираль слишком большую мощность, иначе полимер начинает дымить. Это, конечно, выглядит эффектно и почти не мешает работе, но в конце концов может привести к пожару. Малая мощность тоже нехороша, так как время сокращения тогда может затянуться. В любом случае в конструкции не будут лишними ограничительный термосенсор и ШИМ-регулятор.


Методы

Силиконовые мышцы удивительно просты по конструкции, и при работе с ними реально столкнуться только с двумя проблемами: подбором мощности и созданием достаточно удобных форм для заливки.

Заливочные формы удобно делать из прозрачных пластиковых листов. Только учитывайте, что механизм крепления спирали внутри полимера следует продумывать заранее: после заливки будет поздно.

И материалы

Мягкий силикон для создания мышц можно приобрести в магазинах, где продаются товары для творчества. Оплетка нужного плетения обычно используется для организации и проводки кабелей, искать ее следует у электриков. Самые большие сложности возникают с 96-процентным этанолом, который в России купить сложнее, чем танк. Впрочем, его вполне можно заменить изопропанолом.

«Популярная Механика» выражает благодарность Магазину скелетов за помощь в проведении съемок. 24 Февраля 2014

Как изготовить искусственные мышцы из рыболовной лески

Исследователи из Техасского университета в Далласе (США) представили синтетические мышцы, которые в 100 раз мощнее настоящих мышечных волокон той же длины и массы.

При этом сама технология изготовления оказалась на удивление простой. Для искусственных мышц не понадобилось никаких изощрённых синтетических полимеров: Рэй Бофман (Ray Baughman) и его коллеги просто взяли полимерную нить из тех, которые используют для производства рыболовной лески или синтетических ниток, и скрутили её в спираль. Эта спираль при перемене температуры могла скручиваться и растягиваться. Любопытно, что техпроцесс можно было поменять и так, чтобы эффект был обратным, то есть чтобы нить при остывании скручивалась, а при нагреве растягивалась. Варьируя число нитей в пучке, можно добиваться иных механических характеристик искусственного «мышечного волокна».

Синтетические волокна, сделанные из шести нитей разной толщины:
верхнее сложено из ниток толщиной в 2,45 мм, нижнее – из ниток толщиной в 150 мкм.
(Фото авторов работы.)

И характеристики эти воистину впечатляют. Во-первых, по сравнению с обычными мышцами, которые могут сокращаться лишь на 20% от своей длины, искусственные способны уменьшаться наполовину. Быстрого утомления такие мышцы, разумеется, тоже не знают. Если объединить вместе сотню элементарных волокон, то такая мышца сможет поднять больше 700 кг. Относительно веса волокна могут развивать мощность в 7,1 л.с. на кг, что соответствует, по словам исследователей, мощности реактивного двигателя.

Двигателем же для них, как уже сказано, служит перепад температуры, обеспечить который можно как угодно – хоть с помощью химической реакции, хоть посредством электричества (да хоть своим дыханием грейте эти волокна). Что же до самих волокон, то учёные особенно напирают на исключительную простоту их изготовления: дескать, любой студент сделает такое во время обычной лабораторной, главное – соблюсти физические условия, при которых вы будете деформировать нить. Гениальность же авторов идеи в том, что им удалось в этой тривиальной полимерной конструкции угадать огромный физический потенциал.

Собственно, простота этих мышц, наверное, мешает вот так сразу оценить всю революционность изобретения. Хотя исследователи, разумеется, продемонстрировали возможное его применение: приспособленные к окну, они закрывали и открывали его в зависимости от окружающей температуры. Кроме того, из волокон удалось создать тканую материю, пористость которой опять же менялась в зависимости от температуры, а отсюда легко представить себе «умную» одежду, которая будет сама проветривать вас в жару и экономить тепло в холод.

Но, конечно, львиная доля фантазий вокруг и около искусственных мышц отдана робототехнике. Понятно, что такие волокна могут стать прямым аналогом человеческих мышц у роботов, с помощью которых те смогут даже менять выражение лица. Синтетические мышцы пригодятся как при поднятии тяжестей, так и при выполнении тонких хирургических манипуляций (если мы представим себе медицинские аппараты будущего).

В прошлом такие волокна пытались делать из углеродных нанотрубок. По словам Рэя Бофмана, который прошёл и через этот этап, эксперименты с нанотрубками были успешными, но, во-первых, такие «наномышцы» очень сложны в изготовлении и чрезвычайно дороги, а во-вторых, они сокращались всего на 10% от своей длины, то есть уступали даже обычным живым мышцам, не говоря уже о только что явленных полимерных волокнах.

У нас же есть пока только один вопрос, который касается эффективности и экономичности: сколько тепла (и, следовательно, электрической или химической энергии) нужно потратить на их механическую работу? Авторы признаются, что, как и вообще все искусственные мышцы, их волокна в этом смысле не отличаются особой эффективностью, однако есть определённые надежды, что в этом случае оптимизировать энергетические затраты получится довольно быстро.

Подготовлено по материалам Техасского университета в Далласе: Researchers Create Powerful Muscles From Fishing Line, Thread .

назад

Читать также:

06 Февраля 2014

Бионическая рука с чувством осязания

Девять лет назад датчанину Деннису Соренсену пришлось ампутировать левую руку. Разумеется, он ни на минуту не задумался, когда ему предложили испытать бионический протез, позволяющий не только выполнять движения, но и осязать предметы.

читать 22 Января 2014

Киборг-сперматозоид

Группа исследователей из Университета Иллинойса разработала новый тип крошечных биогибридных машин, способных передвигаться подобно сперматозоидам.

читать 22 Января 2014

Реабилитации парализованной ноги помогут искусственные мышцы

От парализованной стопы можно добиться почти естественной подвижности, если воспользоваться сделанным из гибкого эластичного материала ортопедическим аппаратом, имитирующим устройство мышц и связок ноги.

читать 22 Января 2014

Полимерная клетка имитирует живую

Голландские исследователи произвели искусственную эукариотную клетку, в которой находятся искусственные органеллы и протекают биохимические реакции, аналогичные реакциям, протекающим в клетках живых организмов.

читать 26 Декабря 2013

Нематода с открытым кодом

Авторы проекта OpenWorm, целью которого является создание точной компьютерной копии круглого червя C.elegans, заявили о значительных успехах в моделировании этой нематоды. Исходный код программы опубликован в открытом доступе.